Gatekeeper (Schließanlage)

Follow-Up zur SpaceNotification und Schließanlagen-Projekt mit neuer Schloss-Steuerung, konkret geht es um die Schließanlage.

Meta

Maintainer

tux

Pad

https://pad.n39.eu/p/2014 Gatekeeper

Git-Repo

https://github.com/netz39/space_notification

Git-Repo

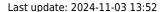
https://github.com/netz39/rollladensteuerung

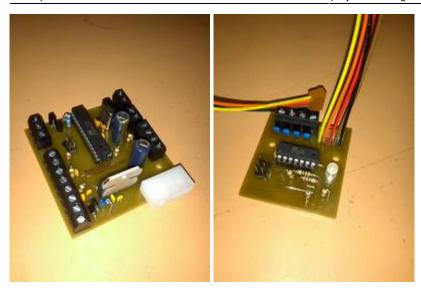
Aufbau und Funktionsweise

Software

Es gibt ein Failsafe-Script, das die Tür abschließt, wenn die Tür offen ist, aber seit 30 Sekunden die SpaceTime inaktiv (aka Ampel rot/aus) ist.

Git-Repo


https://github.com/netz39/Netz39SpaceAPI-Service


Git-Repo

https://github.com/netz39/Netz39AmpelController

README im GitHub

Hardware

Authentifizierung

Telefon

Ansprechpartner

Tux

SSH

Ansprechpartner

Basti

mit einer Webcam und einem QR-Code

Ansprechpartner

Michel

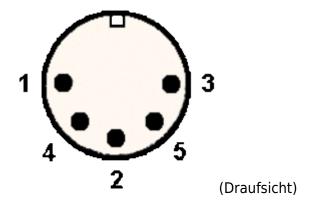
- Links:
 - http://www.jeremyblum.com/portfolio/libetech/
 - https://github.com/sciguy14/LibeTech-QR-Entry
 - https://github.com/sciguy14/LibeTech-QR-WebSystem

I3C-Bus

Der I3C-Bus besteht aus 5 Leitungen:

- SDA und SCL für I²C
- einer Interrupt-Leitung INT

2025-11-27 00:52 3/11 Gatekeeper (Schließanlage)


- Versorgungsspannung 5V
- Masse

Für die Verbindung zwischen Geräten werden Steckverbinder oder 5-polige DIN-Buchsen (Reichelt MAB 5) verwendet.

Belegung Steckverbinder

- 1. SDA
- 2. SCL
- 3. INT
- 4. Vcc (5V)
- 5. GND

Belegung DIN-Buchse

- 1. GND
- 2. INT
- 3. SDA
- 4. Vcc (5V)
- 5. SCL

I3C-Kommandos

Wenn kein data-Wert spezifiziert wird, ist der Parameter nicht relevant. Wenn kein output spezifiziert wird, bedeutet 1 Erfolg. 0 bedeutet immer Fehler einen Parity-Fehler und sollte zum erneuten Aufruf führen.

Device 0x20: Ampel

#define CMD_I3C_RESET 0x00
#define CMD_GETLIGHT 0x01

Last update: 2024-11-03 13:52

#define CMD_SETLIGHT 0x02

• I3C_RESET: Interrupt-Leitung zurücksetzen (sollte bei der Ampel derzeit nicht nötig sein)

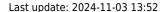
• GETLIGHT: Ampelstatus zurückliefern

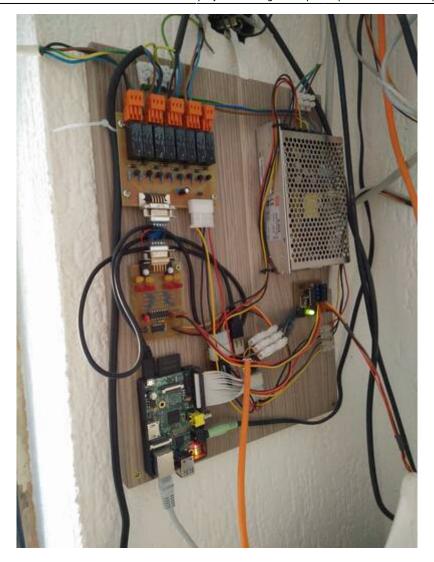
• SETLIGHT: Ampelstatus setzen

data (DDDD)

1 bit blink-Status

3 bit Farbe: 0=keine, 1=rot, 2=grün




Device 0x21: Controller Rollläden

```
#define CMD_ALL_STOP 0x0
#define CMD_STOP 0x1
#define CMD_UP 0x2
#define CMD_DOWN 0x3
```

- ALL_STOP: alle Rollläden stoppen
- STOP: Rollladen aus data anhalten
- UP: Rollladen aus data hochfahren
- DOWN: Rollladen aus data herunterfahren

data gibt jeweils die Nummer des Rollladens (0: fenster bastelbereich, 1: tür bastelbereich, 2: tür lounge, 3: fenster lounge) an Ausgabe: 0 == fehler, 1 == erfolg

Device 0x22: Manuellsteuerung

```
#define CMD_RESET 0x00
#define CMD_BEEP 0x01
#define CMD_MANUAL_MODE 0x02
#define CMD_GET_SWITCH 0x03
#define CMD_MANUAL_SW 0x05
```

- RESET: I3C-Interrupt-Status zurücksetzen
- BEEP: Summer nach Muster aktivieren
 - data enthält das Bitmuster für die Aktivierung
- MANUAL MODE: LED-Anzeige setzen
 - \circ data: 0 = aus, 1 = langsam blinken, 2 = schnell blinken, 3 = an
- GET SWITCH: Schalterstellung auslesen
 - o data: Nummer des Schalters, korrespondierend zur Rollladen-Nummer
 - ∘ output: 1 = hoch, 2 = runter, 3 = neutral
- MANUAL_SW: Status des Tasters setzen/auslesen
 - o data: 1 = Blockstatus löschen, 2 = Blockstatus setzen, sonst keine Änderung
 - output: 1 = Blockstatus gesetzt, 2 = Blockstatus gelöscht (Wert vor Manipulation)

Device 0x23: Tür-Controller

<pre>#define CMD_RESET</pre>	0×00	
<pre>#define CMD_OPEN</pre>	0×01	
<pre>#define CMD_CLOSE</pre>	0x02	
<pre>#define CMD_STATE</pre>	0×03	

• RESET: Tür-Status zurücksetzen, inklusive I3C-Interrupt

• OPEN: Tür öffnen

• CLOSE: Tür schließen

• STATE: Tür-Status zurückliefern. Löscht auch den I3C-Interrupt

output enthält Bitmaske:

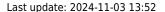
Input Status Byte (ISB) +---+--+---+---+---+ | 7-6 | 5 | 4 | 3 | 2 | 1 | 0 | | res | GB | RB | DC | LO | FC | FO | +----+---+---+ GB Green Button active (Force-open door)

RB Red Button active (Force-close door)

DO Door Open

LC Lock Closed

FC Force Close


FO Force Open

• Bit-Bedeutung

- DO: Tür steht offen (1) oder ist geschlossen (0)
- ∘ LC: Schloss verriegelt (1) / offen (0)
- FC: Force Close Signalleitung "Verriegeln" ist aktiv
- ∘ FO: Force Open Signalleitung "Öffnen" ist aktiv
- o RB, GB sind die beiden Buttons (rot/grün) an der Tür

Device 0x24: SpaceStatus-Switch

#defi	ine CMD_RESET	0×00
#defi	ine CMD_GETSTATE	0x01
#defi	ine CMD_SETSTATE	0x02

- RESET: Tür-Status zurücksetzen, inklusive I3C-Interrupt
- GETSTATE: Aktivierten SpaceStatus zurückgeben (1 closed, 2 open, 3 unbekannt)
- SETSTATE: Setzt einen SpaceStatus (verhindert Notifications über Änderungen, wenn der eig. Status schon angepasst ist)

Schließanlagen reboot

Die letzten Monate hat die PCB der Schließanlage große Verlässligkeitsprobleme gehabt. Häufigster Fehler ist das konstante Neustarten des Microprozessors wenn der Motor anfährt. Es konnte auf Ground-Bounce zurückgeführt werden und wurde [Foto einfügen] provisorisch repariert. 2018-10-14 ist/war das erste Treffen für die Überarbeitung der Technik. Das Pad für Verbesserungen befindet sich hier.

Ideen

- USV
 - https://hackaday.com/2016/11/26/diying-a-raspberry-pi-power-bank/

From:

https://wiki.netz39.de/ - Netz39

Permanent link:

https://wiki.netz39.de/projects:2014:gatekeeper

Last update: 2024-11-03 13:52

