
2025-12-17 20:17 1/3 I2C Foo

Netz39 - https://wiki.netz39.de/

I2C Foo

Maintainer:
tux

Status
Solved - kind of

Problem

RaspberryPi 2B und Attiny verstehen sich nicht per I2C.

Effekt: Der RPi erhält die Antwort auf die vorherige Anfrage. Es handelt sich nicht um ein Timing-
Problem, das Signal sieht gut aus und die Übertragung ist auf dem PHY sauber. Nur die Inhalte
stimmen nicht.

Lösung

https://github.com/netz39/space_notification/pull/12
Repeated Starts im I2C Frame führen dazu, dass die Bibliothek die Schwelle zwischen Schreiben
zum Slave und Lesen vom Slave nicht mehr erkennt und den Callback zu spät ausführt, sodass
die Puffer-Daten aus dem jeweils letzten Request zurückgelesen werden.
Der aktuelle Workaround ist, nach dem Empfang des ersten Bytes mit der Verarbeitung zu
beginnen.
Der Blick auf das Direction Bit könnte ein generischer Marker sein. Diese Bibliothek nutzt aber in
ihrer Implementierung die Zeit, die der Master mit dem Senden der Adresse für ein Read auf
dem Bus verbringt, für die Berechnung. Diese Zeit fehlt dann und wahrscheinlich ist der µC
damit nicht mehr schnell genug. Clock-Stretching wird nicht unterstützt.
Optimal wäre, die Repeated Starts abzuschalten, dazu habe ich aber keinen Switch gefunden.

PRs
https://github.com/netz39/rollladensteuerung/pull/20
https://github.com/netz39/space_notification/pull/12

Logbuch des Wahnsinns

RaspberryPi kann kein Clock Stretching
Problem tritt auf RPi 2B, aber nicht auf RPi A auf
Abstand zwischen den Abfragen ist nicht relevant, es können mehrere Minuten dazwischen
liegen
Start und Stop Condition werden vom Oszi nicht dekodiert (mit anderen Transfers
gegenchecken)

https://wiki.netz39.de/user:tux
https://github.com/netz39/space_notification/pull/12
https://github.com/netz39/rollladensteuerung/pull/20
https://github.com/netz39/space_notification/pull/12


Last update: 2021-11-07 17:23 projects:2020:i2c_foo https://wiki.netz39.de/projects:2020:i2c_foo

https://wiki.netz39.de/ Printed on 2025-12-17 20:17

2021-11-06

Offenbar sendet der RPi2 Repeated-Start-Conditions, die den AVR dazu veranlassen, sofort den
Puffer zurückzugeben, ohne die Interrupt-Routine aufzurufen.
Workaround: i2cget und i2cset trennen
Besser wäre es, wenn der Kernel das schon auseinander nehmen könnte
https://github.com/torvalds/linux/blob/master/drivers/i2c/algos/i2c-algo-bit.c#L552 →
Unterscheidung Start/Stop oder Repeated Start
https://github.com/thenaran/linux-rpi/blob/master/drivers/i2c/busses/i2c-bcm2708.c#L77

Es gibt den Parameter "combined", über den festgelegt wird, ob Nachrichten über
Repeated-Start zusammengefasst werden

Für den relevanten Bus ist bcm-2835 zuständig … oder auch nicht. Es ist bcm2708
Offenbar kommt das repeated-start aus dem Userspace
Benutzt die USITWI-Library für den AVR die Stop-Condition, um das callback aufzurufen?

Der Callback wird nicht in der ISR aufgerufen (was eig. sinnvoll ist)
Ablauf wäre dann so:

Master sendet Adresse und Parameter im ersten Block
Parameter landet im Puffer
Stop-Condition führt dazu, dass Callback (mit Parameter aus Puffer) ausgeführt wird
Während der Master das Adress-Byte für den Read-Request schickt (USI ist
Hardware-basiert, unterbricht also den Programmablauf nicht), führt der Prozessor
den Callback auf dem Parameter aus dem Eingangspuffer aus und schreibt das
Ergebnis in den Ausgangspuffer.
Wenn der Master die das Adress-Byte geschrieben hat, liegt das Ergebnis zum
Senden im Ausgangspuffer

Beim Repeated Start fehlt die Stop-Condition
Callback wird nicht nach Empfang des Eingangs-Parameters (erster Frame)
aufgerufen
d.g. beim Antworten liegen noch die Daten des vorherigen Requests im
Ausgangspuffer
Callback wird _nach_ dem gesamten Request/Response aufgerufen
d.h. bei der nächsten Anfrage liegen dann die Daten der letzten Anfrage im Puffer
und werden zurückgegeben

Lösung könnte sein:

1)
Einen anderen Trigger verwenden (es gibt eine interne State Machine)

2)
I2C-Zugriff zentralisieren, wie das schon mal geplant war.
Bei der Gelegenheit könnte auch gleich der ganze I3C-Teil umgesetzt werden.
Read/Write trennen, sodass der AVR auch definitiv genug Zeit für die Verarbeitung hat

https://github.com/torvalds/linux/blob/master/drivers/i2c/algos/i2c-algo-bit.c#L552
https://github.com/thenaran/linux-rpi/blob/master/drivers/i2c/busses/i2c-bcm2708.c#L77


2025-12-17 20:17 3/3 I2C Foo

Netz39 - https://wiki.netz39.de/

Linksammlung

https://community.atmel.com/forum/e70-twi-master-read-communication-problem
https://elinux.org/BCM2835_datasheet_errata#p35_I2C_clock_stretching
http://ww1.microchip.com/downloads/en/AppNotes/doc8380.pdf
https://hackaday.com/2016/07/19/what-could-go-wrong-i2c-edition/
Attiny Datasheet

ab Seite 117 bzw. Seite 121
Software emulated I2C for Raspberry Pi

nur 8 bit built-in, den Rest muss man emulieren
kann Clock Stretching

From:
https://wiki.netz39.de/ - Netz39

Permanent link:
https://wiki.netz39.de/projects:2020:i2c_foo

Last update: 2021-11-07 17:23

https://community.atmel.com/forum/e70-twi-master-read-communication-problem
https://elinux.org/BCM2835_datasheet_errata#p35_I2C_clock_stretching
http://ww1.microchip.com/downloads/en/AppNotes/doc8380.pdf
https://hackaday.com/2016/07/19/what-could-go-wrong-i2c-edition/
http://ww1.microchip.com/downloads/en/DeviceDoc/doc8006.pdf
https://electronicayciencia.github.io/wPi_soft_i2c/
https://wiki.netz39.de/
https://wiki.netz39.de/projects:2020:i2c_foo

	I2C Foo
	Problem
	Lösung
	Logbuch des Wahnsinns
	2021-11-06

	Linksammlung


